MĚŘENÍ NA OPERAČNÍM USMĚRŇOVAČI

Umožňuje určení aritmetické střední hodnoty periodického signálu u₁(t) definované : $u_s = \frac{1}{T_0} \int_{t_0}^{t_0+T} u_1(t) dt$

kde t_0 je okamžik průchodu napětí $u_1(t)$ nulou s kladnou derivací, T je doba periody.

Zapojení operačního usměrňovače:

Při kladné polaritě vstupního napětí je dioda D1 vodivá , D2 nevodivá a přenos zesilovače Z1 je -1. Při záporné polaritě vstupního napětí je D1 nevodivá, D2 vodivá a přenos zesilovače je 0. Výstupní jednocestně usměrněné napětí je na vstupu zesilovače Z2 sčítáno se vstupním napětím o poloviční amplitudě a ve výstupu zesilovače Z2 je dvoucestně usměrněné vstupní napětí.

&1. Načrtněte pod sebe předpokládané průběhy napětí v bodech IN, A a OUT je-li na vstupu operačního usměrňovače napětí sinusového průběhu.

&2. Odvoď te vztahy pro určení střední hodnoty sinusového, obdélníkového a trojúhelníkového průběhu napětí s amplitudou U_m . Určete činitele tvaru a výkyvu.

&3. Měřením ověřte správnost určení střední hodnoty všech průběhů napětí při amplitudě $U_m = 4V$ a kmitočtu f = 1kHz.

&4. Změřte statickou převodní charakteristiku operačního usměrňovače v rozsahu vstupního napětí $\pm 10V$ a určete odchylky od linearity.

&5. Změřte dynamickou převodní charakteristiku usměrňovače v rozsahu vstupního napětí $0-5V_{EF}$ a kmitočtu 1kHz a určete odchylky od linearity.

&6. Změřte kmitočtovou charakteristiku usměrňovače při vstupním napětí $5V_{EF}$ a určete mezní kmitočet, při kterém klesne přenos usměrňovače o 3dB vzhledem k ss přenosu.

MĚŘENÍ NA PŘEVODNÍKU EFEKTIVNÍ HODNOTY

Převodník efektivní hodnoty je určen ke stanovení skutečné efektivní hodnoty periodického signálu (RMS) podle vztahu:

$$Uef = \sqrt{\frac{1}{T} \int_{0}^{T} u^2(t) dt}$$
 kde T je doba periody měřeného signálu

Na obr.1 je blokové schéma převodníku efektivní hodnoty využívajícího exponenciálních a logaritmických funkčních měničů.

Úpravou vztahu pro ef. hodnotu $u_2 = \sqrt{\frac{1}{T} \int_0^T u_1^2(t) dt}$ dostaneme $u_2 = \frac{1}{T} \int_0^T \frac{u_1^2(t)}{u_2} dt$. vztah $\frac{u_1^2}{u_2}$ upravíme: $\frac{u_1^2}{u_2} = \exp(2 \ln u_1 - \ln u_2)$.

Těmto vztahům odpovídá blokové schéma na obr.1.

obr.1

Praktické zapojení je na obr.2. Po dvojcestném usměrnění vstupního napětí je výstupní napětí operačního usměrňovače převedeno v logaritmickém měniči Z2 (se zesílením 2) tranzistorem T1 na proud, který je odečten od proudu logaritmického měniče Z4, T4 převádějícího výstupní napětí u₂. Střední hodnotu vytvoří dolnofrekvenční filtr s časovou konstantou RC, který je součástí zesilovače Z3.

obr.2

Úkol měření:

- Změřte statickou charakteristiku převodníku v rozsahu vstupního napětí 0 - 10V a určete odchylku od lineárního průběhu.

- Změřte kmitočtovou charakteristiku převodníku při vstupním sinusovém signálu s amplitudou $1V_{ef}$ a $5V_{ef.}$. Určete mezní kmitočet, při kterém klesne přenos převodníku o 3 dB vzhledem ke stejnosměrnému přenosu.

 Ověřte činnost převodníku obdélníkovým a trojúhelníkovým signálem při kmitočtech 1kHz a 10kHz s amplitudou 1V. Výpočtem zkontrolujte shodu naměřených a vypočtených efektivních hodnot.

MĚŘENÍ NA AKTIVNÍCH FILTRECH S OZ

&1. Aktivní filtry mají proti pasivním několik výhod :

- není třeba používat indukčnosti, vystačíme obvykle s článkem RC
- i pro rozsah nízkých kmitočtů vystačíme s malými kapacitami kondenzátorů
- podle potřeby lze vhodně měnit vstupní i výstupní odpor
- dosažitelný zisk > 1

&2. DOLNÍ PROPUST

obr.1 a/ dolní propust

b/ amplitudově-frekvenční charakteristika propusti

&2.1 Určete impedanci Z ve zpětné vazbě.

&2.2 Odvoď te vztah pro výstupní napětí.

- jde o invertující zesilovač $U_{vyst} = -\frac{Z}{R_1} \cdot U_{vst}$

Vztah upravte pro $R_1 = R_2 = R$. Pro f = 0 je pak Au =

&2.3 Čemu se bude blížit výstupní napětí ?

- 1, pro $\omega = 2\pi f \rightarrow 0$
- 2, pro $\omega = 2\pi f \to \infty$

Jaký bude pokles zesílení na dělícím kmitočtu ? Odvoďte!

&2.4 Pro dělící kmitočet f = 1000 Hz a kapacitu C = $0.01 \,\mu\text{F}$ určete velikost odporu R.

&2.5 Zapojení doplňte potřebnými přístroji (dvoukanálový osciloskop, generátor, nf. milivoltmetr), obvod zapojte a změřte amplitudově-frekvenční charakteristiku propusti.
&3. HORNÍ PROPUST

&3.1 Určete impedanci Z prvků na vstupu OZ.

&3.2 Odvoď te vztah pro výstupní napětí.

- jde o invertující zesilovač $U_{vyst} = -\frac{R_2}{Z} \cdot U_{vst}$

&3.3 Vztah upravte pro $R_1 = R_2 = R$

&3.4 Čemu se bude blížit výstupní napětí?

- 1, pro $\omega \rightarrow 0$
- 2, pro $\omega \rightarrow \infty$

Jaký bude pokles zesílení na dělícím kmitočtu ? Odvoďte!

&3.5 Pro dělící kmitočet f = 1000 Hz a kapacitu $C = 0.01 \ \mu$ F určete velikost odporu R.

&3.6 Zapojení doplňte potřebnými přístroji (dvoukanálový osciloskop, generátor, nf. milivoltmetr), obvod zapojte a změřte amplitudově-frekvenční charakteristiku propusti.

&4. Navrhněte zapojení aktivní pásmové propusti.

&4.1 Načrtněte její amplitudově-frekvenční charakteristiku. Naznačte výpočet dělících kmitočtů.

MĚŘENÍ NA PŘEVODNÍKU U/f A f/U.

Užívají se k převodu napětí nebo proudu na frekvenci periodického signálu a naopak

STATICKÉ VLASTNOSTI PŘEVODNÍKU U/faf/U:

převodní konstanta

a) u převodníku U/f $k = \frac{f \max - f \min}{U \max - U \min}$ b) u převodníku f/U $k = \frac{U \max - U \min}{f \max - f \min}$

nelinearita převodní charakteristiky

a) u převodníku U/f
$$NL = \frac{\Delta f}{f \max - f \min}$$

b) u převodníku f/U $NL = \frac{\Delta U}{U \max - U \min}$

převodní charakteristka

 $\begin{array}{c|c} f & & ideální ch. \\ skutečná ch. \\ f_{MAX} & - - & - \\ f & & & \\ f_{MIN} & & & \\ f_{MIN} & & & \\ 0 & & & \\ U_{MIN} & U & U_{MAX} & \\ \end{array}$

U převodníku f/U se u převodní charakteristiky nanáší na vodorovnou osu frekvence a na svislou napětí.

DYNAMICKÉ VLASTNOSTI PŘEVODNÍKŮ:

- mezní frekvence výstupního napětí, kterou je schopen převodník generovat.

- doba ustálení frekvence výstupního napětí při skokové změně vstupního napětí

Převodník napětí frekvence.

Umax-Umin - určuje rozsah napětí fmax-fmin - určuje rozsah frekvencí

Pokud U₁ \langle 0 roste lineárně výstupní napětí integrátoru do okamžiku, kdy překročí hodnotu srovnávacího napětí Um komparátoru K. Potom komparátor překlopí a spustí monostabilní klopný obvod, který po dobu kyvu Tk připojí referenční proud I=1mA k invertujícímu vstupu integrátoru a náboj na kondenzátoru C se odintegrovává.

Kmitočet převodníku v ustáleném stavu: $f = \frac{U_1}{R.Iref.T_k}$ pro R = 50k Ω I_{ref} = 1 μ A, T_K = 20 μ s platí f = U₁ . 1000 \Rightarrow k = 1000 Hz/V nevýhodou zapojení je přímá závislost frekvence na době kyvu Tk.

<u>ÚKOL MĚŘENÍ</u>:

1. Ověřte činnost převodníku U/f v rozsahu vstupního napětí -1V až -10V. Pro $U_1 = -10V$. zakreslete průběhy U_i a U_2 . Určete dobu kyvu MKO.

2. Změřte převodní charakteristiku převodníku napětí kmitočet a změřte její konstantu a nelinearitu od ideální strmosti 1KHz/V.

Převodník kmitočet napětí.

Je duální obvod k převodníku U/f a proto má i shodné obvody.

Převodník je tvořen komparátorem K. V okamžiku, kdy amplituda impulsního signálu na vstupu komparátoru K překročí hodnotu srovnávacího napětí komparátoru, komparátor překlopí a spustí monostabilní klopný obvod, který po dobu kyvu připojí na vstup integračního zesilovače Z referenční proud I=1mA.

V ustáleném stavu je výstupní napětí integrátoru (střední hodnota) $U_2 = R$. Iref. Tk. f

Časová konstanta RC se volí z hlediska požadovaného zvlnění výstupního napětí.

ÚKOL MĚŘENÍ:

1. Ověřte činnost převodníku f/U v rozsahu kmitočtů 100Hz až 10kHz. Pro f=10KHz zakreslete průběhy signálů MKO a U₂. Určete dobu kyvu MKO.

2. Změřte převodní charakteristiku převodníku kmitočtu napětí a určete její konstantu a nelinearitu od ideální strmosti 1V/KHz.

Základy práce s programem HP VEE

1) Spuštění programu HP VEE : dvojitým kliknutím na ikonu HP VEE

2) Otevření nového souboru : v menu FILE příkaz NEW

3) Výběr objektu pro demonstraci práce s objektem : např. v menu DISPLAY zvolte objekt ALPHA NUMERIC a ten přesuňte na pracovní plochu kde ho kliknutím levého tlačítka myši "položte" na požadované místo.

VLASTNÍ PRÁCE S OBJEKTY :

a) Zobrazte menu objektu : klikněte na čtverec v levém horním rohu objektu

b) Přesunutí objektu : máme dvě možnosti

1) Zobrazte menu objektu a zvolte funkci MOVE. Kurzor myši přesuňte do místa kam chcete objekt přesunout a stiskněte levé tlačítko myši.

2) Přesuňte kurzor myši nad objekt a při stlačeném levém tlačítku myši přesuňte objekt zároveň s kurzorem na požadované místo.

c) Změna velikosti objektu : máme dvě možnosti

1) Zobrazte menu objektu a zvolte funkci SIZE. Kurzor myši změní svůj tvar na " \downarrow ". Značku umístíme do místa kde chceme, aby byl pravý dolní roh objektu (levý horní roh zůstává na stejném místě) a stiskneme tlačítko myši.

2) Přesuňte kurzor myši na pravý dolní roh objektu a při stlačeném levém tlačítku myši můžete měnit velikost objektu pohybem kurzoru myši.

d) **Minimalizace objektu** : Při složitějších úlohách se stává schéma nepřehledné a je potřeba objekty se kterými se nepracuje minimalizovat. To je možné opět dvěma způsoby.

1) Zobrazte menu objektu a zvolte funkci MINIMIZE

2) Klikněte na čtverec v pravém horním rohu

e) Obnovení velikosti objektu po minimalizaci : máme dvě možnosti

1) Zobrazte menu objektu (u minimalizovaného objektu přesunutím kurzoru nad objekt a kliknutím pravého tlačítka myši) a zvolte funkci RESTORE

2) Dvakrát klikněte levým tlačítkem myši na minimalizovaný objekt

f) Kopie objektu : Zvolte funkci CLONE z objektového menu kopírovaného souboru

g)Vymazání objektu z pracovní plochy :

Zobrazte menu objektu a zvolte funkci CUT

h) Propojování objektů :

Pro tuto úlohu si vyvolejte objekt FUNCTION GENERATOR a WAVEFORM (TIME)

Každý objekt má čtyři základní piny, kterými se připojuje k ostatním objektům : datové piny - vlevo vstupní, vpravo výstupní a sekvenční piny - nahoře vstupní, dole výstupní Piny se spojují křivkami, které představují vodivé kanály. Počátek křivky se vygeneruje a připojí k výchozímu pinu kliknutím levého tlačítka myši do jeho blízkého okolí. Křivka se "natáhne" k cílovému pinu a připojí se kliknutím levého tlačítka myši do jeho blízkého okolí.

Úkol : Propojte datový výstupní pin objektu FUNCTION GENERATOR se vstupním datovým pinem objektu WAVEFORM (TIME). Úlohu spusťte kliknutím myši na tlačítko RUN. Postupně si vyzkoušejte měnit frekvenci, napětí a typ signálu generovaného virtuálním generátorem.

ch) **Rozpojování objektů** : Kdekoliv na volné pracovní ploše klikněte pravým tlačítkem myši. Ze zobrazeného edit hlavního menu zvolte funkci DELETE LINE a klikněte myší na tu křivku, kterou chcete smazat.

Úkol : Zrušte propojení datových pinů objektu FUNCTION GENERATOR a WAVEFORM (TIME)

Simulace měření kmitočtů metodou Lissajousových obrazců

Simulace spočívá v tom, že fyzické přístroje jsou nahrazeny virtuálními objekty.

Nakreslete schéma zapojení úlohy (skutečné) a porovnejte se zapojením na obr.1.

Pokuste se odpovědět na následující otázky :

- 1) Který objekt představuje osciloskop?
- 2) Které objekty představují generátor ?
- 3) Který objekt úlohu spouští a který zajišťuje její nepřetržitý chod ?

Realizujte zapojení dle obr.1. Umístění jednotlivých objektů :

objekt START (FLOW \Rightarrow START) objekt UNTIL BREAK (FLOW \Rightarrow REPEAT \Rightarrow UNTIL BREAK) objekt INT32 SLIDER (DATA \Rightarrow CONTINUOUS \Rightarrow INT32 SLIDER) objekt FUNCTION GENERATOR (DEVICE \Rightarrow VIRTUAL SOURCE \Rightarrow FUNCTION GEN.) objekt X vs Y PLOT (DISPLAY \Rightarrow XvsY PLOT)

Přidání vstupního nebo výstupního pinu : Pro přidání pinu objektu slouží funkce ADD TERMINAL z objektového menu.

- Oběma generátorům přidejte vstupní datové piny sloužící pro zadávání frekvence

Zrušení vstupního nebo výstupního pinu : Pro zrušení pinu objektu slouží funkce DELETE TERMINAL z objektového menu.

- vyzkoušejte funkci obvodu pro různé poměry kmitočtů fx a fn

Změnu barvy písma titulu, barvy pozadí titulu, barvy písma objektu, barvy pozadí objektu, dále pak názvu (titulu objektu) a mnoho dalších funkcí je možné provádět vyvoláním dialogového okna EDIT PROPERTIES z objektového menu. Tuto funkci je možné vyvolat také dvojím kliknutím na pruh s názvem objektu.

- opatřete jednotlivé objekty názvy odpovídajícími jejich skutečnému využití

- vyzkoušejte si změnu barev pozadí objektu a titulu a změnu barvy písma

- vyzkoušejte si změnu typu písma

U objektu X vs Y PLOT je dialogové okno EDIT PROPERTIES rozsáhlejší. Vyzkoušejte si změnit rastr (funkce GRID TYPE), aktivujte kurzory pro odečítání hodnot z obrazovky (funkce MARKERS), zobrazte pouze graf (funkce GRAPH ONLY), otevřete dialogové okno TRACES & SCALES a zkuste změnit barvu křivky grafu (COLOR), typ čáry (LINES) a vyznačení naměřených hodnot

(POINTS)

- Zjistěte činnost následujících funkcí :
 - a) SHOW TITLE BAR
 - b) SHOW TERMINAL

Zobrazení vybraných objektů v panelu :

Vyvolejte hlavní editační menu ze zobrazené nabídky zvolte funkci SELECT OBJECTS. Levým tlačítkem myši klikněte postupně na vybrané objekty (zvolte objekty X vs Y PLOT, START a INTEGER SLIDER), pak opět vyvolejte hlavní editační menu a zvolte funkci ADD TO PANEL.

Tisk grafu objektu XvsY PLOT proveďte pomocí příkazu PLOT z objektového menu.

Tisk programu (schématu) proveďte pomocí příkazu PRINT PROGRAM z menu FILE. V dialogovém okně aktivujte pouze položku PRINT PROGRAM EXPLORER

Rezonanční obvody

ÚKOL :

Zobrazte závislost impedance na frekvenci (Z=f(f)) pro paralelní rezonanční obvod tvořený odporem R, cívkou L a kondenzátorem C.

1) Odvoď te vztah popisující uvedenou závislost

2) Pomocí programu HP VEE namodelujte obvod a závislost znázorněte graficky vstupem bude :

hodnota odporu R	objekt REAL64 SLIDER
hodnota indukčnosti L	objekt REAL64 SLIDER
hodnota kapacity C	objekt REAL64 SLIDER

interval hodnot frekvence pro který se má graf zobrazit objekt FOR RANGE

výstupem bude :

rezonanční frekvence fo zapsaná v objektu ALPHA NUMERIC

závislost Z=f(f) zobrazená v objektu XvsY PLOT

Pro zápis vztahů matematicky popisujících paralelní rezonanční obvod slouží objekt FORMULA. Tento objekt má jeden nebo více vstupních pinů (viz příkaz ADD TERMINAL - DATA INPUT), jejichž označení je možné dle potřeby měnit otevřením dialogového okna dvojitým kliknutím na označení vstupního pinu (doporučuji označení vstupních pinů odpovídající použitým proměnným např. odpor-R, frekvence-f atd.) a jeden výstupní pin označený RESULT na kterém se po aktivaci objektu objeví výsledek zpracovaný dle předpisu zapsaného v objektu.

Dále můžete při řešení využít řady objektů realizujících matematické funkce. Tyto objekty se nachází v menu FUNCTION&OBJECT BROWSER.

obr.1. Měření kmitočtů metodou Lissajousových obrazců