

SN5472, 54L72, 54H72, 7472

AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear

These J-K flip-flops are based on the master-slave principle and each has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

- 1. Isolate slave from master
- 2. Enter information from AND gate inputs to master
- 3. Disable AND gate inputs
- 4. Transfer information from master to slave

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.

The SN5472, SN54H72, and the SN54L72 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN7472 is characterized for operation from 0°C to 70°C.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

FOR REFERENCE ONLY

TYPES SN5472, SN54H72, SN54L72, SN7472, SN74H72 AND-GATED J-K MASTER-SLAVE FLIP-FLOPS WITH PRESET AND CLEAR

REVISED DECEMBER 1983

- Package Options Include Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These J-K flip-flops are based on the master-slave principle and each has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

- 1. Isolate slave from master
- 2. Enter information from AND gate inputs to master
- 3. Disable AND gate inputs
- 4. Transfer information from master to slave

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.

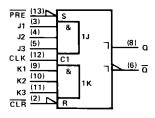
The SN5472, SN54H72, and the SN54L72 are characterized for operation over the full military temperature range of $-55\,^{\circ}\text{C}$ to $125\,^{\circ}\text{C}$. The SN7472 and the SN74H72 are characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$.

FUNCTION TABLE

	INP	JTS			OUTPUTS		
PRE	CLR	CLK	J	ĸ	a	ō	
L	Н	X	х	Х	н	L	
н	L	Х	×	х	L	н	
L	L	X	Х	х	н†	н [†]	
н	н	Ţ	L	L	ο ₀	\bar{a}_0	
Н	Н	T	Н	L	н	L	
н	н	Λ.	L	н	L	н	
Н	н	T	н	н	TOG	GLE	

[†] This configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.

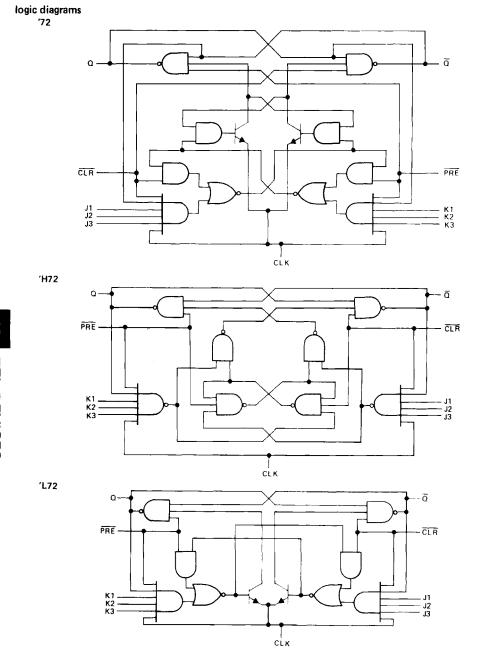
SN5472, SN54H72, SN54L72 ... J PACKAGE SN7472, SN74H72 ... J OR N PACKAGE (TOP VIEW)


NC□	1	U 14	יַם	۷çc
CLR [2	13	וֹם	PRE
J1 🗆	3	12	þ	CLK
J2 🗀	4	11	ים	Κ3
J3 🗆	5	10	ום	Κ2
ā۲	6	9	ים	Κ1
GND 🗖	7	8	Ь	Q

SN5472, SN54H72 . . . W PACKAGE (TOP VIEW)

к1 □	1	U 14 ☐ K3	
CLK	2	13 K2	
PRE	3	12 🗖 Q	
V _{CC} □	4	11D GN	C
CLR [5	10□ @	
NC 🗆	6	9∐ J3	
J1 🗆	7	8] J2	

NC - No internal connection

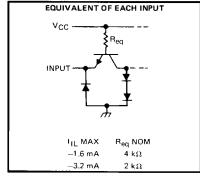

logic symbol

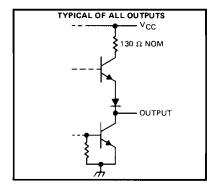
Pin numbers shown are for J and N packages.

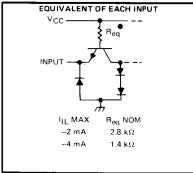
positive logic

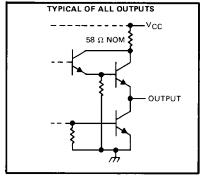
J = J1 · J2 · J3 K = K1 · K2 · K3 VICES

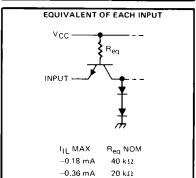
3-280

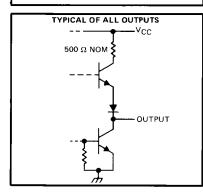



72


'H72


'L72


schematics of inputs and outputs



absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

)	
	Input voltage		5.5 V
(Operating free-air temperature:	SN54'	– 55°C to 125°C
		SN74'	0°C to 70°C
5			
OTE	1: Voltage values are with respect to	network ground terminal.	

TTL DEVICES 🐼

recommended operating conditions

				SN547	2		SN7472	?	
			MIN	NOM	MAX	MIN	NOM	MAX	UNI
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			8.0	V
ЮН	High-level output current			- 0.4			- 0.4	mΑ	
loL	Low-level output current				16			16	mA
		CLK high	20			20			
tw	Pulse duration	CLK low	47			47			ns
		PRE or CLR	25			25			
tsu	Input setup time before CLK↑		Ö			0			ns
th	Input hold time-data after CLK ↓		0			0			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DA DA	******	TEST CONDITIONS †		SN5472	!		SN7472	!	
PAHA	METER	TEST CONDITIONS	MIN	TYP\$	MAX	MIN	TYP‡	MAX	UNIT
VIK		V _{CC} = MIN, I ₁ = − 12 mA			- 1.5			- 1.5	V
V _{OH}		$V_{CC} = MIN$, $V_{1H} = 2V$, $V_{1L} = 0.8 V$, $I_{OH} = -0.4 \text{ mA}$	2,4	3.4		2.4	3.4		v
VOL		V _{CC} = MIN, V _{IH} = 2 V, V _{IL} 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
l ₁		V _{CC} = MAX, V _I = 5.5 V			1			1	mA
lan.	Jor K	V - MAY V - 24V			40			40	
1 _H	All other	V _{CC} = MAX, V ₁ = 2.4 V			80			80	μΑ
	Jor K	V MAY V - 0 4 V		_	~ 1.6			- 1.6	
'IL	All other	V _{CC} = MAX, V _I = 0.4 V			3.2			- 3.2	mA
¹os₃		V _{CC} - MAX	- 20		- 57	- 18		- 57	mA
¹cc		V _{CC} = MAX, See Note 2		10	20		10	20	mΑ

- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
- ‡ All typical values are at V_{CC} = 5 V, T_A < 25 C. § Not more than one output should be shorted at a time.
- NOTE 2: With all outputs open, Γ_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
fmax				15	20		MHz
tPLH	DDE or CLD	Qorā			16	25	ns
tPHL t	PRE or CLR		R _L = 400 Ω, C _L = 15 pF		25	40	ns
^t PLH		Q or Q			16	25	ns
^t PHL					25	40	ns

NOTE 3: See General Information Section for load circuits and voltage waveforms

SN54H72

MIN NOM MAX

5 5.5 4.75

8.0

0.5

20

125

4.5

2

12

28

16

0

0

- 55

SN74H72

MIN NOM MAX

2

12

28

16

0

0

Ω

5.25

0.8

- 0.5

20

70

UNIT

٧

٧

٧

mΑ

mΑ

ns

ns

ns

°C

TTL DEVICES

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

CLK high

CLK low

CLR or PRE

data high or low

			SN54H72			SN74H7	2	UNIT
PARAMETER	TEST CONDITIONS †		TYP‡ N	/AX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN, I _I = -8 mA			- 1.5			- 1.5	٧
Voн	$V_{CC} = MIN$, $V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $I_{OH} = -0.5 \text{ mA}$	2.4	3.4		2.4	3.4		٧
V _{OL}	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 20 mA		0.2	0.4		0.2	0.4	V
F ₁	V _{CC} = MAX, V _I = 5.5 V			1			1	mΑ
J, K or CLK	V MAY V = 2.4 V			50			50	μА
PRE or CLR*	V _{CC} = MAX, V _I = 2.4 V			100			100	μд
J, K or CLR	V MAY V 0.4V			- 2			- 2	^
IL PRE or CLR*	V _{CC} = MAX, V _I = 0.4 V			- 4			4	mΑ
los ș	V _{CC} = MAX	- 40		100	- 40		- 100	mA
¹ cc	V _{CC} = MAX, See Note 2		16	25		16	25	mA

- † For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

recommended operating conditions

Supply voltage

Pulse duration

High-level input voltage

Low-level input voltage

High-level output current Low-level output current

Setup time, before CLK †

Hold time-data after CLK J

Operating free-air temperature

vcc

VIH

v_{IL}

ЮН

OL

tw

t_{su}

 t_{h}

 T_A

- ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
- NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
fmax				25	30		MHz
[†] PLH	PRE or CLR	Q or $\overline{\mathbb{Q}}$			-6	13	ns
t _{PHL}	PREDICER	u or u	R_{L} : 280 Ω , C_{L} = 25 pF		12	24	ns
¹ PLH	CLK	Q or $\overline{\mathbf{Q}}$			14	21	ns
tpHi	CLK				22	27	ns

NOTE 3: See General Information Section for load circuits and voltage waveforms

recommended operating conditions

			MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	٧
VIH	High-level input voltage		2			V
.,	I am land the same and the same	Clock input			0.6	V
VIL	Low-level input voltage	All other inputs			0.7	1 °
ЮН	High-level output current	•			- 0.1	mA
loL	Low-level output current				2	mA
	D. Institution	CLK high or low	200			
t _w	Pulse duration	PRE or CLR low	100			ns
t _{su}	Setup time before CLK †		0			ns
th	Hold time, data after CLK↓		0			ns
TA	Operating free-air temperature		- 55		125	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAI	RAMETER		TES	TCONDITIONS	t	MIN	TYP‡	MAX	UNIT
V _{OH}		V _{CC} = MIN,	V _{IH} = 2 V,	VIL = MAX,	I _{OH} = - 0.1 mA	2.4	3.3		V
VOL		V _{CC} = MIN,	V _{IH} = 2 V,	VIL = MAX,	I _{OL} = 2 mA		0.15	0.3	٧
J or K	J or K	V _{CC} = MAX,	V. 55.V					0.1	mA
ч	All other	ACC - MAY	V 15.5 V	V · 5.5 V				0.2	
	Jor K							10	
Ιн	PRE or CLR	VCC = MAX,	V = 2.4 V			20	μА		
	CLK					_ 200			
	J or K	- MAY	V ₁ ~ 0.3 V					- 0,18	
l _{IL}	All other	VCC - MAX,				- 0.36			mA.
los		V _{CC} = MAX				- 3		– 15	mA
Icc		V _{CC} = MAX,	See Note 2				0.76	1.44	mA

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ} \text{ C}$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax				2.5	3		MHz
^t PLH	PRE or CLR	Q or Q			35	75	ns
	PRE or CLR (CLK high)	Q or Q	$R_L = 4 k\Omega$, $C_L = 50 pF$		60	150	
^t PHL	PRE or CLR (CLK low)				-	200	ns
^t PLH	0.14			10	35	75	ns
^t PHL	CLK	Q or Q		10	60	150	ns

NOTE 3: See General information Section for load circuits and voltage waveforms

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at V_{CC} = 5 V, T_A = 25 C. NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is