Základní postup při práci s programem Dynast

- 1. spusťte program Dynast poklepáním na ikonu na pracovní ploše,
- 2. otevřte připravený prázdný projekt (z menu File→Open, adresář data, soubor prazdny.dia),
- 3. uložte připravený prázdný projekt pod novým názvem (z menu File→Save As, adresář: data, název souboru: prijmeni01.dia),

pozn.: pokud kurzor zůstane na chvíli nad tlačítkem nástrojové lišty objeví se bublinová nápověda s názvem funkce daného tlačítka,

- **4.** sestavte schéma modelu pomocí tlačítka "Place part" na nástrojové liště, které otevře výběr knihoven prvků ze kterých zvolte jen potřebné bloky (ne všechny jsou vždy potřeba):
 - generátor signálu $1(t) = blocks \rightarrow simulink \rightarrow Step block,$
 - generátor signálu Sin(ω t) = multi-domain \rightarrow sinusoidal sources \rightarrow Sine_across-var_src,
 - zem pro sinusový zdroj = physical elements \rightarrow elektrical \rightarrow reference (electrical ground),
 - integrator = blocks→block_sub/Blocks_with_input_pins→integrator,
 - konstanta/zesilovač = blocks \rightarrow Blocks_with_input_pins \rightarrow scalor,
 - sumátor = blocks \rightarrow block_sub \rightarrow summator,

další bloky, které lze v případě potřeby pro naše účely použít jsou:

- regulátor PID = blocks \rightarrow control \rightarrow PID controller,
- člen 1. řádu = blocks→control→1st-order transfer by coefficients (exponenciály),
- člen 2. řádu = blocks \rightarrow control \rightarrow 2nd-order transfer by coefficients (S křivky),
- člen s dopravním zpožděním = blocks \rightarrow block_sub \rightarrow transport-delay block,

pozn.: jednotlivé bloky lze otáčet o násobky 90° pomocí stisků klávesy "r" (rotate),

- 5. rozložené bloky schématu propojte vodičem pomocí tlačítka "Connector" na nástr. liště,
- **6.** nadefinujte parametry bloků (násobící a integrační koeficienty a jejich znaménka), pozn.: parametry se zadávají **s desetinnou tečkou** na klávesnici (poblíž písmene M),
- **7.** do schématu vložte měřící body pomocí tlačítka "Node label" na nástrojové liště a pojmenujte je dle významu,
- 8. uložte schéma (soubor prijmeni01.dia) na disk tlačítkem "Save" z nástrojové lišty,
- 9. nakonfigurujte analýzu v menu Analysis podle typu požadované charakteristiky,
- **10.** odstartujte simulaci buď tlačítkem "Run analysis & plot results" a zobrazí se rovnou graf, nebo tlačítkem "Run analysis" a po zobrazení výsledků v textovém tvaru vykreslete graf tlačítkem "Plot output file",
- 12. nakonfigurujte graf vhodnými volbami pro žádaný tvar, ikona "Select variables" = umožňuje výběr současně zobrazených grafů signálů, (tuto nabídku lze vyvolat i pravým kliknutím do okénka grafu), ikona "Multiple Y" = zobrazuje samostatné grafy, nebo grafy v jedněch souřadnicích, ikona "Zero offset Y" = nastaví společnou nulu pro vícenásobný graf, ikona "LOG" = zobrazí vodorovnou stupnici v logaritmickém měřítku (pro FCHVLS),
- 13. pro přechodovou char. je zdrojem vstupního signálu blok Step (jednotkový skok),
 - v menu Analysis zvolte Nonlinear Analysis a nastavte rozsah času Time from \Box to \Box např. pro první simulaci zvolte čas od 0 do 30 sec,
 - v kartě Desired Variables vyberte svůj výstupní signál,
 - odstartujte Analýzu příkazem Run analysis a zobrazte graf tlačítkem na nástrojové liště Plot result file (View – Result plot),
 - v grafu zvolte jako nezávislou proměnnou (Independent variable) čas (time) a jako závislou proměnnou (Dependent variables) výstupní signál,

SPŠ a VOŠ Chomutov

 podle vzhledu grafu upravte rozsah času analýzy tak, aby byl zobrazen především přechod – celý a do ustálené hodnoty (zmenšit původních 30 sec na např. 10 sec nebo naopak zvětšit třeba na 200 sec) a znova odsimulujte průběh,

- 14. pro frekvenční char. je zdrojem vstupního signálu blok Sine_across_var_source (Esine), který je uzemněn pomocí symbolu uzemnění reference (physical elements→electrical→reference),
 - v menu Analysis zvolte Numerical Freguency Analysis,
 - vhodně nastavte Frequency range

např. od 1E-3 do 1E3, tj. od 0,001 do 1000 (vyhoví pro téměř všechny příklady),

 v kartě Desired Variables vyberte svůj výstupní signál a zaškrtněte jeho 4 komponenty: Real part, Imaginary part, Magnitude in dB a Phase in degrees,

- odstartujte Analýzu příkazem Run analysis a zobrazte graf tlačítkem na nástrojové liště Plot result file (View – Result plot),
- nastavení grafů vyvolejte pravým kliknutím v okně grafu (Set variable a Custom range),
- pro FCHVKR zvolte v Set variables jako nezávislou proměnou (Independent variable) položku RE (reálnou část výsledku) a jako závislou položku (Dependent variables) IM (imaginární část výsledku),

pozn.: v případě že v grafu není vidět žádný průběh, pomocí "Custom range" změňte nastavení rozsahu os z 0-0 na rozumné hodnoty (symetrické okolo nuly) např. -1 a +1, v případě kostrbaté charakteristiky je vhodné nastavit počet vzorků (Equidistant results at: 501 points) na vyšší hodnotu (např. na 2000 apod.),

- pro FCHVLS zvolte v Set varibles jako nezávislou proměnou (Independent variable) frekvenci a jako závislé položky (Dependent variables) Magnitude in dB (amplituda v decibelech) a Phase in degrees (fáze ve stupních),
- zobrazení 2 samostatných grafů dostanete volbou "Multiple Y",
- pro zobrazení stupnice v dekádách zapněte logaritmickou stupnici "Logarithmic X",
- **15.** upravte velikost a rozložení oken Dynastu pro dokumentaci (sejmuté obrazovky musí zachovat čitelnost popisů os a hodnot koeficientů ve schématu),
- 16. sejměte obrazovku stiskem klávesy Print Screen,
- 17. v aplikaci Malování vložte obsah schránky (kopii sejmuté obrazovky) pomocí Ctrl+v nebo pomocí menu "Schránka → vložit" na pracovní plochu editoru,
- 18. upravte obrázek odřezáním nedůležitých částí,
- 19. uložte obrázek pomocí menu "Soubor → Uložit jako" ve vhodném grafickém formátu (png, bmp, gif apod.) pod vhodným pojmenování (aby bylo jasné, co obrázek obsahuje, případně má obsahovat) na svůj FLASH disk.

Vzhled a význam ikon v Dynastu na liště nástrojů:

Nastavení simulace a grafu pro přechodovou charakteristiku:

ubmodel Properties	? 🛛 No	onlinear Analysis		? 🛛
Step	ОК	Analysis Desired Variab	les Initial Values System Parameters	Computation Control
▼ Name: Type: step1 step.mod	Help	Analysis mode	Time from: 0	to: 30 [s]
Parameters: Parameters from a catalog:		C Static or steady-s	ate	
Parameter Value Description Ts 0 [s] step time		Parameter	swept from:	to:
y1 0 [-] initial value y2 1 [-] final value		Desired results	esults at: 501 points 🥅 H	old results
		Fourier analysis C Fourier Peri	od: 1 [s] Harmonics: 10	Samples: 128
1σ ¹⁵ 1σ ¹² 1σ ⁹ 1σ ⁶ 1σ ³ 1ο ³ 1ο ⁶ 1ο ⁹ 1ο ¹² π	Expression		ОК	Storno Nápověda
inear Analysis		? 🔀 P	ot - Select Variables	? 🔀
lysis Desired Variables Initial Values Comp	outation Control	I B	esult table	
variables C differentiated variables				•
ariable Description			ndependent variable	
V.2			ime [s]	ОК
X . I				
ibmodels:		D	ependent variables	Cancel
bmodels: step1 TRFC21			ependent variables	Cancel
bmodels: step1 TRFC21			ependent variables ☐ time [s] ☑ V.2	Cancel Help
bmodels: step1 TRFC21			ependent variables time [s] V.2	Cancel Help
ibmodels:].step1] TRFC21			ependent variables ☐ time [s] ☑ V.2	Cancel Help

Nastavení simulace pro frekvenční charakteristiky

(sinusový zdroj vyžaduje uzemnění – physical elements → electrical → reference/electrical ground):

	Submodel Properties	Numerical Frequency Analysis
	Sine generic arcoss-variable source OK Cancel	Frequency Desired Variables
	Image: Type: Esine1 esine.mod	Frequency range from 115-3 Her 115-3
(the state)	Parameters: Parameters from a catalog:	Cogarighmic or C Linear scale
: <u>+</u>	Parameter Value Description Em 1 amplitude phi 0 [rad] phase shift f 1 [Hz] frequency	Equidistant results at: 501 points
		Points: 1
	$10^{15} 10^{12} 10^{9} 10^{6} 10^{3} 10^{3} 10^{6} 10^{9} 10^{12}$ π Expression	OK Storno Nápověda
	Numerical Frequency Analysi Frequency Desired Variables Select desired variable	
	Variable Description Solved variables: V.1	Components Magnitude Magnitude
	V.2 Submodels: ⊕ Esine1	Phase in radians
		✓ Phase in degrees ✓ Real part
		I Imaginary part
		OK Storno Nápověda

Laboratoř automatizace

Nastavení grafu pro FCHVKR:

Nastavení grafu pro FCHVLS:

Plot - Select Variables	? 🔀
Result table	
1.	-
Independent variable	
RE.V.2	ОК
Dependent variables	Cancel
□ RE.V.2 ☑ IM.V.2	Help
	Import

Plot - Select Variables		?	×	
Result table				
1.			•	
Independent variable				
freq [Hz]	•	OK		
Dependent variables		Cano	el	
freq [Hz] IM.Vout		Held		
RE.Vout				
DEG.Vout				
DB.Vgen				
		Tenne	-	
1		Impo	rt –	

Po zobrazení grafu zapněte logaritmickou stupnici (ikona LOG)

obr. Frekvenční charakteristika v komplexní rovině (FCHVKR)

SPŠ a VOŠ Chomutov

obr. Frekvenční charakteristika v logaritmických souřadnicích (FCHVLS), nahoře je amplitudová a pod ní fázová charakteristika, graf má zapnutou logaritmickou stupnici (ikona LOG)

Pro úsporné zobrazení výsledků je vhodné uspořádat jednotlivá okna na pracovní ploše Dynastu tak, aby byla dosažena přehlednost jednotlivých charakteristik za podmínky zachování čitelnosti.

Model řešené rovnice má vždy několik variant, které dávají správné a stejné výsledky. Na následujícím obrázku jsou uvedeny 4 varianty modelu diferenciální rovnice 1. řádu 4y°+2y=u.

Obr. Varianty správného řešení stejné rovnice 4y'+2y=u